Math 10460 - Honors Mathematics II Homework 4b - Due Wednesday, February 10

Let d > 0, and $\varepsilon \ge 0$. The polar equation

$$r = \frac{d}{1 + \varepsilon \sin \theta} \tag{*}$$

is also a conic section, and it fits the same rule as before

- $\varepsilon = 1$ is a parabola
- $\varepsilon \ge 1$ is a hyperbola
- $0 < \varepsilon < 1$ is an ellipse

Please do the following exercises:

(1) Verify the facts that

$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$$
$$\sin\left(\theta - \frac{\pi}{2}\right) = -\cos\theta$$
$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta$$

and

$$\cos\left(\theta - \frac{\pi}{2}\right) = \sin\theta$$

- (2) (a) Graph $r = \cos \theta$ and $r = \cos \left(\theta \frac{\pi}{4}\right)$ on the same set of axes. What do you see?
 - (b) Find Cartesian equations for both graphs.
 - (c) What are the radii of the two circles?
 - (d) What are the centers of the two circles?
 - (e) What is the distance from each center to the origin?
 - (f) What can you now *conclusively* say about the graph of $r = \cos\left(\theta \frac{\pi}{4}\right)$ in relation to the graph of $r = \cos\theta$?
- (3) Consider the graph of the polar function $r = f(\theta)$ and let ω be some fixed angle. How does the graph of $r = f(\theta \omega)$ relate to the original graph if $\omega > 0$? if $\omega < 0$? Give some justification in each case.
- (4) Find Cartesian coordinates for the three types of conic sections which are possibilities for (*). *Hint*: The solution to the previous problem can make this much easier than repeating the analysis of section 12.2 of the polar packet.